
ISO/IEC JTC 1/SC 29/WG 1 N 2412
Date: 2005-12-03

ISO/IEC JTC 1/SC 29/WG 1
(ITU-T SG 16)

Coding of Still Pictures
JBIG JPEG

Joint Bi-level Image Joint Photographic
Experts Group Experts Group

TITLE: The JPEG-2000 Still Image Compression Standard
(Last Revised: 2005-12-03)

SOURCE: Michael D. Adams

Assistant Professor
Dept. of Electrical and Computer Engineering
University of Victoria
P. O. Box 3055 STN CSC, Victoria, BC, V8W 3P6, CANADA

E-mail: mdadams@ece.uvic.ca
Web: www.ece.uvic.ca/˜mdadams

PROJECT: JPEG 2000

STATUS:

REQUESTED ACTION: None

DISTRIBUTION: Public

Contact:
ISO/IEC JTC 1/SC 29/WG 1 Convener—Dr. Daniel T. Lee
Yahoo! Asia, Sunning Plaza, Rm 2802, 10 Hysan Avenue, Causeway Bay, Hong Kong
Yahoo! Inc, 701 First Avenue, Sunnyvale, California 94089, USA
Tel: +1 408 349 7051/+852 2882 3898, Fax: +1 253 830 0372, E-mail: dlee@yahoo-inc.com

THIS PAGE WAS INTENTIONALLY LEFT BLANK
(TO ACCOMMODATE DUPLEX PRINTING).

Copyright c© 2002–2005 Michael D. Adams 1

The JPEG-2000 Still Image Compression Standard∗

(Last Revised: 2005-12-03)

Michael D. Adams
Dept. of Electrical and Computer Engineering, University of Victoria

P. O. Box 3055 STN CSC, Victoria, BC, V8W 3P6, CANADA
E-mail: mdadams@ece.uvic.ca Web: www.ece.uvic.ca/˜mdadams

Abstract—JPEG 2000, a new international standard for still image com-
pression, is discussed at length. A high-level introduction to the JPEG-2000
standard is given, followed by a detailed technical description of the JPEG-
2000 Part-1 codec.

Keywords—JPEG 2000, still image compression/coding, standards.

I. INTRODUCTION

DIGITAL IMAGERY is pervasive in our world today. Con-
sequently, standards for the efficient representation and

interchange of digital images are essential. To date, some of
the most successful still image compression standards have re-
sulted from the ongoing work of the Joint Photographic Experts
Group (JPEG). This group operates under the auspices of Joint
Technical Committee 1, Subcommittee 29, Working Group 1
(JTC 1/SC 29/WG 1), a collaborative effort between the In-
ternational Organization for Standardization (ISO) and Interna-
tional Telecommunication Union Standardization Sector (ITU-
T). Both the JPEG [1–3] and JPEG-LS [4–6] standards were
born from the work of the JPEG committee. For the last few
years, the JPEG committee has been working towards the estab-
lishment of a new standard known as JPEG 2000 (i.e., ISO/IEC
15444). The fruits of these labors are now coming to bear, as
several parts of this multipart standard have recently been rati-
fied including JPEG-2000 Part 1 (i.e., ISO/IEC 15444-1 [7]).

In this paper, we provide a detailed technical description of
the JPEG-2000 Part-1 codec, in addition to a brief overview of
the JPEG-2000 standard. This exposition is intended to serve as
a reader-friendly starting point for those interested in learning
about JPEG 2000. Although many details are included in our
presentation, some details are necessarily omitted. The reader
should, therefore, refer to the standard [7] before attempting
an implementation. The JPEG-2000 codec realization in the
JasPer software [8–10] (developed by the author of this paper)
may also serve as a practical guide for implementors. (See Ap-
pendix A for more information about JasPer.) The reader may
also find [11–13] to be useful sources of information on the
JPEG-2000 standard.

The remainder of this paper is structured as follows. Sec-
tion II begins with a overview of the JPEG-2000 standard. This
is followed, in Section III, by a detailed description of the JPEG-
2000 Part-1 codec. Finally, we conclude with some closing re-

∗This document is a revised version of the JPEG-2000 tutorial that I wrote
which appeared in the JPEG working group document WG1N1734. The original
tutorial contained numerous inaccuracies, some of which were introduced by
changes in the evolving draft standard while others were due to typographical
errors. Hopefully, most of these inaccuracies have been corrected in this revised
document. In any case, this document will probably continue to evolve over
time. Subsequent versions of this document will be made available from my
home page (the URL for which is provided with my contact information).

marks in Section IV. Throughout our presentation, a basic un-
derstanding of image coding is assumed.

II. JPEG 2000

The JPEG-2000 standard supports lossy and lossless com-
pression of single-component (e.g., grayscale) and multi-
component (e.g., color) imagery. In addition to this basic com-
pression functionality, however, numerous other features are
provided, including: 1) progressive recovery of an image by fi-
delity or resolution; 2) region of interest coding, whereby differ-
ent parts of an image can be coded with differing fidelity; 3) ran-
dom access to particular regions of an image without needing to
decode the entire code stream; 4) a flexible file format with pro-
visions for specifying opacity information and image sequences;
and 5) good error resilience. Due to its excellent coding per-
formance and many attractive features, JPEG 2000 has a very
large potential application base. Some possible application ar-
eas include: image archiving, Internet, web browsing, document
imaging, digital photography, medical imaging, remote sensing,
and desktop publishing.

A. Why JPEG 2000?

Work on the JPEG-2000 standard commenced with an initial
call for contributions [14] in March 1997. The purpose of having
a new standard was twofold. First, it would address a number
of weaknesses in the existing JPEG standard. Second, it would
provide a number of new features not available in the JPEG stan-
dard. The preceding points led to several key objectives for the
new standard, namely that it should: 1) allow efficient lossy and
lossless compression within a single unified coding framework,
2) provide superior image quality, both objectively and subjec-
tively, at low bit rates, 3) support additional features such as rate
and resolution scalability, region of interest coding, and a more
flexible file format, 4) avoid excessive computational and mem-
ory complexity. Undoubtedly, much of the success of the orig-
inal JPEG standard can be attributed to its royalty-free nature.
Consequently, considerable effort has been made to ensure that
a minimally-compliant JPEG-2000 codec can be implemented
free of royalties1.

B. Structure of the Standard

The JPEG-2000 standard is comprised of numerous parts,
with the parts listed in Table I being defined at the time of this
writing. For convenience, we will refer to the codec defined in

1Whether these efforts ultimately prove successful remains to be seen, how-
ever, as there are still some unresolved intellectual property issues at the time of
this writing.

2 Copyright c© 2002–2005 Michael D. Adams

Part 1 (i.e., [7]) of the standard as the baseline codec. The base-
line codec is simply the core (or minimal functionality) JPEG-
2000 coding system. Part 2 (i.e., [15]) describes extensions to
the baseline codec that are useful for certain “niche” applica-
tions, while Part 3 (i.e., [16]) defines extensions for intraframe-
style video compression. Part 5 (i.e., [17]) provides two refer-
ence software implementations of the Part-1 codec, and Part 4
(i.e., [18]) provides a methodology for testing implementations
for compliance with the standard. In this paper, we will, for the
most part, limit our discussion to the baseline codec. Some of
the extensions included in Part 2 will also be discussed briefly.
Unless otherwise indicated, our exposition considers only the
baseline system.

For the most part, the JPEG-2000 standard is written from the
point of view of the decoder. That is, the decoder is defined quite
precisely with many details being normative in nature (i.e., re-
quired for compliance), while many parts of the encoder are less
rigidly specified. Obviously, implementors must make a very
clear distinction between normative and informative clauses in
the standard. For the purposes of our discussion, however, we
will only make such distinctions when absolutely necessary.

III. JPEG-2000 CODEC

Having briefly introduced the JPEG-2000 standard, we are
now in a position to begin examining the JPEG-2000 codec in
detail. The codec is based on wavelet/subband coding tech-
niques [21, 22]. It handles both lossy and lossless compres-
sion using the same transform-based framework, and borrows
heavily on ideas from the embedded block coding with opti-
mized truncation (EBCOT) scheme [23–25]. In order to fa-
cilitate both lossy and lossless coding in an efficient manner,
reversible integer-to-integer [26–28] and nonreversible real-to-
real transforms are employed. To code transform data, the codec
makes use of bit-plane coding techniques. For entropy coding,
a context-based adaptive binary arithmetic coder [29] is used—
more specifically, the MQ coder from the JBIG2 standard [30].
Two levels of syntax are employed to represent the coded image:
a code stream and file format syntax. The code stream syntax is
similar in spirit to that used in the JPEG standard.

The remainder of Section III is structured as follows. First,
Sections III-A to III-C, discuss the source image model and
how an image is internally represented by the codec. Next, Sec-
tion III-D examines the basic structure of the codec. This is
followed, in Sections III-E to III-M by a detailed explanation of
the coding engine itself. Next, Sections III-N and III-O explain
the syntax used to represent a coded image. Finally, Section III-
P briefly describes some of the extensions included in Part 2 of
the standard.

A. Source Image Model

Before examining the internals of the codec, it is important to
understand the image model that it employs. From the codec’s
point of view, an image is comprised of one or more compo-
nents (up to a limit of 214), as shown in Fig. 1(a). As illustrated
in Fig. 1(b), each component consists of a rectangular array of
samples. The sample values for each component are integer val-
ued, and can be either signed or unsigned with a precision from

Component 1

Component 2
...

Component 0

Component N−1

(a)
Component i

...

...

...

(b)

Fig. 1. Source image model. (a) An image with N components. (b) Individual
component.

1 to 38 bits/sample. The signedness and precision of the sample
data are specified on a per-component basis.

All of the components are associated with the same spatial ex-
tent in the source image, but represent different spectral or aux-
iliary information. For example, a RGB color image has three
components with one component representing each of the red,
green, and blue color planes. In the simple case of a grayscale
image, there is only one component, corresponding to the lu-
minance plane. The various components of an image need not
be sampled at the same resolution. Consequently, the compo-
nents themselves can have different sizes. For example, when
color images are represented in a luminance-chrominance color
space, the luminance information is often more finely sampled
than the chrominance data.

B. Reference Grid

Given an image, the codec describes the geometry of the var-
ious components in terms of a rectangular grid called the ref-
erence grid. The reference grid has the general form shown
in Fig. 2. The grid is of size Xsiz×Ysiz with the origin lo-
cated at its top-left corner. The region with its top-left corner at
(XOsiz,YOsiz) and bottom-right corner at (Xsiz− 1,Ysiz− 1)
is called the image area, and corresponds to the picture data to
be represented. The width and height of the reference grid can-
not exceed 232 − 1 units, imposing an upper bound on the size
of an image that can be handled by the codec.

All of the components are mapped onto the image area of
the reference grid. Since components need not be sampled at
the full resolution of the reference grid, additional information
is required in order to establish this mapping. For each com-
ponent, we indicate the horizontal and vertical sampling period
in units of the reference grid, denoted as XRsiz and YRsiz, re-
spectively. These two parameters uniquely specify a (rectangu-
lar) sampling grid consisting of all points whose horizontal and
vertical positions are integer multiples of XRsiz and YRsiz, re-
spectively. All such points that fall within the image area, con-

Copyright c© 2002–2005 Michael D. Adams 3

TABLE I

PARTS OF THE STANDARD

Part Title Purpose Document
1 Core coding system Specifies the core (or minimal functionality) JPEG-2000 codec. [7]
2 Extensions Specifies additional functionalities that are useful in some applications but need not be supported

by all codecs.
[15]

3 Motion JPEG 2000 Specifies extensions to JPEG-2000 for intraframe-style video compression. [16]
4 Conformance testing Specifies the procedure to be employed for compliance testing. [18]
5 Reference software Provides sample software implementations of the standard to serve as a guide for implementors. [17]
6 Compound image file format Defines a file format for compound documents. [19]
8 Secure JPEG 2000 Defines mechanisms for conditional access, integrity/authentication, and intellectual property

rights protection.

∗

9 Interactivity tools, APIs and pro-
tocols

Specifies a client-server protocol for efficiently communicating JPEG-2000 image data over net-
works.

∗

10 3D and floating-point data Provides extensions for handling 3D (e.g., volumetric) and floating-point data. ∗

11 Wireless Provides channel coding and error protection tools for wireless applications. ∗

12 ISO base media file format Defines a common media file format used by Motion JPEG 2000 and MPEG 4. [20]
13 Entry-level JPEG 2000 encoder Specifies an entry-level JPEG-2000 encoder. ∗

∗This part of the standard is still under development at the time of this writing.

(Xsiz−1,Ysiz−1)

(XOsiz,YOsiz)

Xsiz−XOsiz

Image Area

(0,0)

Xsiz

Ysiz−YOsiz

Ysiz

XOsiz

YOsiz

Fig. 2. Reference grid.

stitute samples of the component in question. Thus, in terms
of its own coordinate system, a component will have the size
(⌈

Xsiz
XRsiz

⌉

−
⌈

XOsiz
XRsiz

⌉)

×
(⌈

Ysiz
YRsiz

⌉

−
⌈

YOsiz
YRsiz

⌉)

and its top-left sam-
ple will correspond to the point

(⌈

XOsiz
XRsiz

⌉

,
⌈

YOsiz
YRsiz

⌉)

. Note that
the reference grid also imposes a particular alignment of sam-
ples from the various components relative to one another.

From the diagram, the size of the image area is (Xsiz −
XOsiz)× (Ysiz−YOsiz). For a given image, many combina-
tions of the Xsiz, Ysiz, XOsiz, and YOsiz parameters can be
chosen to obtain an image area with the same size. Thus, one
might wonder why the XOsiz and YOsiz parameters are not
fixed at zero while the Xsiz and Ysiz parameters are set to the
size of the image. As it turns out, there are subtle implications
to changing the XOsiz and YOsiz parameters (while keeping the
size of the image area constant). Such changes affect codec be-
havior in several important ways, as will be described later. This
behavior allows a number of basic operations to be performed
more efficiently on coded images, such as cropping, horizon-
tal/vertical flipping, and rotation by an integer multiple of 90
degrees.

C. Tiling

In some situations, an image may be quite large in compar-
ison to the amount of memory available to the codec. Conse-
quently, it is not always feasible to code the entire image as a

T7

T0 T1 T2

T3 T4 T5

T6 T8

(XOsiz,YOsiz)

(0,0)

(XTOsiz,YTOsiz)

XTOsiz XTsiz XTsiz XTsiz

YTsiz

YTsiz

YTsiz

YTOsiz

Ysiz

Xsiz

Fig. 3. Tiling on the reference grid.

single atomic unit. To solve this problem, the codec allows an
image to be broken into smaller pieces, each of which is inde-
pendently coded. More specifically, an image is partitioned into
one or more disjoint rectangular regions called tiles. As shown
in Fig. 3, this partitioning is performed with respect to the ref-
erence grid by overlaying the reference grid with a rectangu-
lar tiling grid having horizontal and vertical spacings of XTsiz
and YTsiz, respectively. The origin of the tiling grid is aligned
with the point (XTOsiz,YTOsiz). Tiles have a nominal size of
XTsiz×YTsiz, but those bordering on the edges of the image
area may have a size which differs from the nominal size. The
tiles are numbered in raster scan order (starting at zero).

By mapping the position of each tile from the reference grid
to the coordinate systems of the individual components, a par-
titioning of the components themselves is obtained. For exam-
ple, suppose that a tile has an upper left corner and lower right
corner with coordinates (tx0, ty0) and (tx1 −1, ty1 −1), respec-
tively. Then, in the coordinate space of a particular component,
the tile would have an upper left corner and lower right cor-
ner with coordinates (tcx0, tcy0) and (tcx1−1, tcy1−1), respec-

4 Copyright c© 2002–2005 Michael D. Adams

tcx0 tcy0

tcx1 tcy1

(0,0)

Tile−Component Data

(,)

(−1, −1)

Fig. 4. Tile-component coordinate system.

tively, where

(tcx0, tcy0) = (dtx0/XRsize ,dty0/YRsize) (1a)

(tcx1, tcy1) = (dtx1/XRsize ,dty1/YRsize) . (1b)

These equations correspond to the illustration in Fig. 4. The por-
tion of a component that corresponds to a single tile is referred
to as a tile-component. Although the tiling grid is regular with
respect to the reference grid, it is important to note that the grid
may not necessarily be regular with respect to the coordinate
systems of the components.

D. Codec Structure

The general structure of the codec is shown in Fig. 5 with
the form of the encoder given by Fig. 5(a) and the decoder
given by Fig. 5(b). From these diagrams, the key processes
associated with the codec can be identified: 1) preprocess-
ing/postprocessing, 2) intercomponent transform, 3) intracom-
ponent transform, 4) quantization/dequantization, 5) tier-1 cod-
ing, 6) tier-2 coding, and 7) rate control. The decoder structure
essentially mirrors that of the encoder. That is, with the excep-
tion of rate control, there is a one-to-one correspondence be-
tween functional blocks in the encoder and decoder. Each func-
tional block in the decoder either exactly or approximately in-
verts the effects of its corresponding block in the encoder. Since
tiles are coded independently of one another, the input image
is (conceptually, at least) processed one tile at a time. In the
sections that follow, each of the above processes is examined in
more detail.

E. Preprocessing/Postprocessing

The codec expects its input sample data to have a nominal
dynamic range that is approximately centered about zero. The
preprocessing stage of the encoder simply ensures that this ex-
pectation is met. Suppose that a particular component has P
bits/sample. The samples may be either signed or unsigned,
leading to a nominal dynamic range of [−2P−1,2P−1 − 1] or
[0,2P − 1], respectively. If the sample values are unsigned, the
nominal dynamic range is clearly not centered about zero. Thus,
the nominal dynamic range of the samples is adjusted by sub-
tracting a bias of 2P−1 from each of the sample values. If the
sample values for a component are signed, the nominal dynamic
range is already centered about zero, and no processing is re-
quired. By ensuring that the nominal dynamic range is centered

about zero, a number of simplifying assumptions could be made
in the design of the codec (e.g., with respect to context model-
ing, numerical overflow, etc.).

The postprocessing stage of the decoder essentially undoes
the effects of preprocessing in the encoder. If the sample val-
ues for a component are unsigned, the original nominal dynamic
range is restored. Lastly, in the case of lossy coding, clipping is
performed to ensure that the sample values do not exceed the
allowable range.

F. Intercomponent Transform

In the encoder, the preprocessing stage is followed by the for-
ward intercomponent transform stage. Here, an intercomponent
transform can be applied to the tile-component data. Such a
transform operates on all of the components together, and serves
to reduce the correlation between components, leading to im-
proved coding efficiency.

Only two intercomponent transforms are defined in the base-
line JPEG-2000 codec: the irreversible color transform (ICT)
and reversible color transform (RCT). The ICT is nonreversible
and real-to-real in nature, while the RCT is reversible and
integer-to-integer. Both of these transforms essentially map im-
age data from the RGB to YCrCb color space. The transforms
are defined to operate on the first three components of an image,
with the assumption that components 0, 1, and 2 correspond
to the red, green, and blue color planes. Due to the nature of
these transforms, the components on which they operate must
be sampled at the same resolution (i.e., have the same size). As
a consequence of the above facts, the ICT and RCT can only be
employed when the image being coded has at least three com-
ponents, and the first three components are sampled at the same
resolution. The ICT may only be used in the case of lossy cod-
ing, while the RCT can be used in either the lossy or lossless
case. Even if a transform can be legally employed, it is not
necessary to do so. That is, the decision to use a multicompo-
nent transform is left at the discretion of the encoder. After the
intercomponent transform stage in the encoder, data from each
component is treated independently.

The ICT is nothing more than the classic RGB to YCrCb color
space transform. The forward transform is defined as





V0(x,y)
V1(x,y)
V2(x,y)



 =





0.299 0.587 0.114
−0.16875 −0.33126 0.5

0.5 −0.41869 −0.08131









U0(x,y)
U1(x,y)
U2(x,y)



 (2)

where U0(x,y), U1(x,y), and U2(x,y) are the input components
corresponding to the red, green, and blue color planes, respec-
tively, and V0(x,y), V1(x,y), and V2(x,y) are the output compo-
nents corresponding to the Y, Cr, and Cb planes, respectively.
The inverse transform can be shown to be





U0(x,y)
U1(x,y)
U2(x,y)



 =





1 0 1.402
1 −0.34413 −0.71414
1 −1.772 0









V0(x,y)
V1(x,y)
V2(x,y)



 (3)

The RCT is simply a reversible integer-to-integer approxima-
tion to the ICT (similar to that proposed in [28]). The forward

Copyright c© 2002–2005 Michael D. Adams 5

Preprocessing
Forward
Intercomponent
Transform

Forward
Intracomponent
Transform

Quantization
Tier−1
Encoder

Tier−2
Encoder

Coded
Image

Rate Control

Original
Image

(a)

Tier−2
Decoder

Tier−1
Decoder

Inverse
Intracomponent
Transform

PostprocessingDequantization
Inverse
Intercomponent
Transform

Coded
Image

Reconstructed
Image

(b)

Fig. 5. Codec structure. The structure of the (a) encoder and (b) decoder.

transform is given by

V0(x,y) =
⌊

1
4 (U0(x,y)+2U1(x,y)+U2(x,y))

⌋

(4a)

V1(x,y) = U2(x,y)−U1(x,y) (4b)

V2(x,y) = U0(x,y)−U1(x,y) (4c)

where U0(x,y), U1(x,y), U2(x,y), V0(x,y), V1(x,y), and V2(x,y)
are defined as above. The inverse transform can be shown to be

U1(x,y) = V0(x,y)−
⌊

1
4 (V1(x,y)+V2(x,y))

⌋

(5a)

U0(x,y) = V2(x,y)+U1(x,y) (5b)

U2(x,y) = V1(x,y)+U1(x,y) (5c)

The inverse intercomponent transform stage in the decoder
essentially undoes the effects of the forward intercomponent
transform stage in the encoder. If a multicomponent transform
was applied during encoding, its inverse is applied here. Unless
the transform is reversible, however, the inversion may only be
approximate due to the effects of finite-precision arithmetic.

G. Intracomponent Transform

Following the intercomponent transform stage in the encoder
is the intracomponent transform stage. In this stage, transforms
that operate on individual components can be applied. The par-
ticular type of operator employed for this purpose is the wavelet
transform. Through the application of the wavelet transform,
a component is split into numerous frequency bands (i.e., sub-
bands). Due to the statistical properties of these subband signals,
the transformed data can usually be coded more efficiently than
the original untransformed data.

Both reversible integer-to-integer [26, 27, 31–33] and non-
reversible real-to-real wavelet transforms are employed by the
baseline codec. The basic building block for such transforms
is the 1-D 2-channel perfect-reconstruction (PR) uniformly-
maximally-decimated (UMD) filter bank (FB) which has the
general form shown in Fig. 6. Here, we focus on the lifting
realization of the UMDFB [34, 35], as it can be used to imple-
ment the reversible integer-to-integer and nonreversible real-to-
real wavelet transforms employed by the baseline codec. In fact,

h+ h+

h+ h+

↓2

↓2

z

-- -- - -

-- - - -?

?

-

?

6

6

6

6

6

6

?

?

?

- -

-
?

?

-

-

· · ·

· · ·

s0

· · · s1

· · ·

A0(z)

x[n]

A1(z)

Aλ−2(z)

Aλ−1(z)Qλ−2

Qλ−1

Q0

Q1

y0[n]

y1[n]

(a)
h+ h+

h+ h+

↑2

↑2

z−1

h+-
?

- - -

6
?

- -

-- ?- - -6
?-

6

6

6

6? ?

-

-

-

6

6

-

-

· · ·

· · ·

· · ·

· · ·

+

+

+

+ −

−

−

−

A0(z)

Aλ−1(z)

Aλ−2(z)

A1(z)

x[n]

Qλ−1

Qλ−2

Q1

Q0

s−1
1

s−1
0

y0[n]

y1[n]

(b)

Fig. 6. Lifting realization of a 1-D 2-channel PR UMDFB. (a) Analysis side. (b)
Synthesis side.

for this reason, it is likely that this realization strategy will be
employed by many codec implementations. The analysis side
of the UMDFB, depicted in Fig. 6(a), is associated with the for-
ward transform, while the synthesis side, depicted in Fig. 6(b),
is associated with the inverse transform. In the diagram, the
{Ai(z)}

λ−1
i=0 , {Qi(x)}

λ−1
i=0 , and {si}

1
i=0 denote filter transfer func-

tions, quantization operators, and (scalar) gains, respectively. To
obtain integer-to-integer mappings, the {Qi(x)}

λ−1
i=0 are selected

such that they always yield integer values, and the {si}
1
i=0 are

chosen as integers. For real-to-real mappings, the {Qi(x)}
λ−1
i=0

are simply chosen as the identity, and the {si}
1
i=0 are selected

from the real numbers. To facilitate filtering at signal bound-
aries, symmetric extension [36–38] is employed. Since an im-
age is a 2-D signal, clearly we need a 2-D UMDFB. By applying
the 1-D UMDFB in both the horizontal and vertical directions,
a 2-D UMDFB is effectively obtained. The wavelet transform is
then calculated by recursively applying the 2-D UMDFB to the
lowpass subband signal obtained at each level in the decompo-
sition.

6 Copyright c© 2002–2005 Michael D. Adams

LL 0

R−2HHLHR−2

HLR−2

HLR−1

HHR−1LHR−1

...

... ...

Fig. 7. Subband structure.

Suppose that a (R− 1)-level wavelet transform is to be em-
ployed. To compute the forward transform, we apply the anal-
ysis side of the 2-D UMDFB to the tile-component data in an
iterative manner, resulting in a number of subband signals be-
ing produced. Each application of the analysis side of the 2-D
UMDFB yields four subbands: 1) horizontally and vertically
lowpass (LL), 2) horizontally lowpass and vertically highpass
(LH), 3) horizontally highpass and vertically lowpass (HL), and
4) horizontally and vertically highpass (HH). A (R − 1)-level
wavelet decomposition is associated with R resolution levels,
numbered from 0 to R − 1, with 0 and R − 1 corresponding
to the coarsest and finest resolutions, respectively. Each sub-
band of the decomposition is identified by its orientation (e.g.,
LL, LH, HL, HH) and its corresponding resolution level (e.g.,
0,1, . . . ,R−1). The input tile-component signal is considered to
be the LLR−1 band. At each resolution level (except the lowest)
the LL band is further decomposed. For example, the LLR−1

band is decomposed to yield the LLR−2, LHR−2, HLR−2, and
HHR−2 bands. Then, at the next level, the LLR−2 band is de-
composed, and so on. This process repeats until the LL0 band
is obtained, and results in the subband structure illustrated in
Fig. 7. In the degenerate case where no transform is applied,
R = 1, and we effectively have only one subband (i.e., the LL0

band).
As described above, the wavelet decomposition can be as-

sociated with data at R different resolutions. Suppose that the
top-left and bottom-right samples of a tile-component have co-
ordinates (tcx0, tcy0) and (tcx1 −1, tcy1 −1), respectively. This
being the case, the top-left and bottom-right samples of the
tile-component at resolution r have coordinates (trx0, try0) and
(trx1 −1, try1 −1), respectively, given by

(trx0, try0) =
(⌈

tcx0/2R−r−1⌉ ,
⌈

tcy0/2R−r−1⌉) (6a)

(trx1, try1) =
(⌈

tcx1/2R−r−1⌉ ,
⌈

tcy1/2R−r−1⌉) (6b)

where r is the particular resolution of interest. Thus, the tile-
component signal at a particular resolution has the size (trx1 −
trx0)× (try1 − try0).

Not only are the coordinate systems of the resolution levels
important, but so too are the coordinate systems for the various

subbands. Suppose that we denote the coordinates of the upper
left and lower right samples in a subband as (tbx0, tby0) and
(tbx1−1, tby1−1), respectively. These quantities are computed
as

(tbx0, tby0)

=































(⌈

tcx0
2R−r−1

⌉

,
⌈

tcy0
2R−r−1

⌉)

for LL band
(⌈

tcx0
2R−r−1 −

1
2

⌉

,
⌈

tcy0
2R−r−1

⌉)

for HL band
(⌈

tcx0
2R−r−1

⌉

,
⌈

tcy0
2R−r−1 −

1
2

⌉)

for LH band
(⌈

tcx0
2R−r−1 −

1
2

⌉

,
⌈

tcy0
2R−r−1 −

1
2

⌉)

for HH band

(7a)

(tbx1, tby1)

=































(⌈

tcx1
2R−r−1

⌉

,
⌈

tcy1
2R−r−1

⌉)

for LL band
(⌈

tcx1
2R−r−1 −

1
2

⌉

,
⌈

tcy1
2R−r−1

⌉)

for HL band
(⌈

tcx1
2R−r−1

⌉

,
⌈

tcy1
2R−r−1 −

1
2

⌉)

for LH band
(⌈

tcx1
2R−r−1 −

1
2

⌉

,
⌈

tcy1
2R−r−1 −

1
2

⌉)

for HH band

(7b)

where r is the resolution level to which the band belongs, R is
the number of resolution levels, and tcx0, tcy0, tcx1, and tcy1 are
as defined in (1). Thus, a particular band has the size (tbx1 −
tbx0)× (tby1 − tby0). From the above equations, we can also
see that (tbx0, tby0) = (trx0, try0) and (tbx1, tby1) = (trx1, try1)
for the LLr band, as one would expect. (This should be the case
since the LLr band is equivalent to a reduced resolution version
of the original data.) As will be seen, the coordinate systems for
the various resolutions and subbands of a tile-component play
an important role in codec behavior.

By examining (1), (6), and (7), we observe that the coordi-
nates of the top-left sample for a particular subband, denoted
(tbx0, tby0), are partially determined by the XOsiz and YOsiz
parameters of the reference grid. At each level of the decompo-
sition, the parity (i.e., oddness/evenness) of tbx0 and tby0 affects
the outcome of the downsampling process (since downsampling
is shift variant). In this way, the XOsiz and YOsiz parameters
have a subtle, yet important, effect on the transform calculation.

Having described the general transform framework, we now
describe the two specific wavelet transforms supported by the
baseline codec: the 5/3 and 9/7 transforms. The 5/3 transform
is reversible, integer-to-integer, and nonlinear. This transform
was proposed in [26], and is simply an approximation to a linear
wavelet transform proposed in [39]. The 5/3 transform has an
underlying 1-D UMDFB with the parameters:

λ = 2, A0(z) = − 1
2 (z+1), A1(z) = 1

4 (1+ z−1), (8)

Q0(x) = −b−xc , Q1(x) =
⌊

x+ 1
2

⌋

, s0 = s1 = 1.

The 9/7 transform is nonreversible and real-to-real. This trans-
form, proposed in [22], is also employed in the FBI fingerprint
compression standard [40] (although the normalizations differ).
The 9/7 transform has an underlying 1-D UMDFB with the pa-

Copyright c© 2002–2005 Michael D. Adams 7

rameters:

λ = 4, A0(z) = α0(z+1), A1(z) = α1(1+ z−1), (9)

A2(z) = α2(z+1), A3(z) = α3(1+ z−1),

Qi(x) = x for i = 0,1,2,3,

α0 ≈−1.586134, α1 ≈−0.052980, α2 ≈ 0.882911,

α3 ≈ 0.443506, s0 ≈ 1/1.230174, s1 = −1/s0.

Since the 5/3 transform is reversible, it can be employed for
either lossy or lossless coding. The 9/7 transform, lacking the
reversible property, can only be used for lossy coding. The num-
ber of resolution levels is a parameter of each transform. A typi-
cal value for this parameter is six (for a sufficiently large image).
The encoder may transform all, none, or a subset of the compo-
nents. This choice is at the encoder’s discretion.

The inverse intracomponent transform stage in the decoder
essentially undoes the effects of the forward intracomponent
transform stage in the encoder. If a transform was applied to
a particular component during encoding, the corresponding in-
verse transform is applied here. Due to the effects of finite-
precision arithmetic, the inversion process is not guaranteed to
be exact unless reversible transforms are employed.

H. Quantization/Dequantization

In the encoder, after the tile-component data has been trans-
formed (by intercomponent and/or intracomponent transforms),
the resulting coefficients are quantized. Quantization allows
greater compression to be achieved, by representing transform
coefficients with only the minimal precision required to obtain
the desired level of image quality. Quantization of transform co-
efficients is one of the two primary sources of information loss
in the coding path (the other source being the discarding of cod-
ing pass data as will be described later).

Transform coefficients are quantized using scalar quantiza-
tion with a deadzone. A different quantizer is employed for the
coefficients of each subband, and each quantizer has only one
parameter, its step size. Mathematically, the quantization pro-
cess is defined as

V (x,y) = b|U(x,y)|/∆csgnU(x,y) (10)

where ∆ is the quantizer step size, U(x,y) is the input sub-
band signal, and V (x,y) denotes the output quantizer indices for
the subband. Since this equation is specified in an informative
clause of the standard, encoders need not use this precise for-
mula. This said, however, it is likely that many encoders will, in
fact, use the above equation.

The baseline codec has two distinct modes of operation, re-
ferred to herein as integer mode and real mode. In integer mode,
all transforms employed are integer-to-integer in nature (e.g.,
RCT, 5/3 WT). In real mode, real-to-real transforms are em-
ployed (e.g., ICT, 9/7 WT). In integer mode, the quantizer step
sizes are always fixed at one, effectively bypassing quantization
and forcing the quantizer indices and transform coefficients to
be one and the same. In this case, lossy coding is still possible,
but rate control is achieved by another mechanism (to be dis-
cussed later). In the case of real mode (which implies lossy cod-
ing), the quantizer step sizes are chosen in conjunction with rate

control. Numerous strategies are possible for the selection of the
quantizer step sizes, as will be discussed later in Section III-L.

As one might expect, the quantizer step sizes used by the en-
coder are conveyed to the decoder via the code stream. In pass-
ing, we note that the step sizes specified in the code stream are
relative and not absolute quantities. That is, the quantizer step
size for each band is specified relative to the nominal dynamic
range of the subband signal.

In the decoder, the dequantization stage tries to undo the ef-
fects of quantization. This process, however, is not usually in-
vertible, and therefore results in some information loss. The
quantized transform coefficient values are obtained from the
quantizer indices. Mathematically, the dequantization process
is defined as

U(x,y) = (V (x,y)+ r sgnV (x,y))∆ (11)

where ∆ is the quantizer step size, r is a bias parameter, V (x,y)
are the input quantizer indices for the subband, and U(x,y) is
the reconstructed subband signal. Although the value of r is
not normatively specified in the standard, it is likely that many
decoders will use the value of one half.

I. Tier-1 Coding

After quantization is performed in the encoder, tier-1 coding
takes place. This is the first of two coding stages. The quantizer
indices for each subband are partitioned into code blocks. Code
blocks are rectangular in shape, and their nominal size is a free
parameter of the coding process, subject to certain constraints,
most notably: 1) the nominal width and height of a code block
must be an integer power of two, and 2) the product of the nom-
inal width and height cannot exceed 4096.

Suppose that the nominal code block size is tentatively cho-
sen to be 2xcb × 2ycb. In tier-2 coding, yet to be discussed,
code blocks are grouped into what are called precincts. Since
code blocks are not permitted to cross precinct boundaries, a re-
duction in the nominal code block size may be required if the
precinct size is sufficiently small. Suppose that the nominal
code block size after any such adjustment is 2xcb’ ×2ycb’ where
xcb’≤ xcb and ycb’≤ ycb. The subband is partitioned into code
blocks by overlaying the subband with a rectangular grid having
horizontal and vertical spacings of 2xcb’ and 2ycb’, respectively,
as shown in Fig. 8. The origin of this grid is anchored at (0,0) in
the coordinate system of the subband. A typical choice for the
nominal code block size is 64×64 (i.e., xcb = 6 and ycb = 6).

Let us, again, denote the coordinates of the top-left sample
in a subband as (tbx0, tby0). As explained in Section III-G, the
quantity (tbx0, tby0) is partially determined by the reference grid
parameters XOsiz and YOsiz. In turn, the quantity (tbx0, tby0)
affects the position of code block boundaries within a subband.
In this way, the XOsiz and YOsiz parameters have an impor-
tant effect on the behavior of the tier-1 coding process (i.e., they
affect the location of code block boundaries).

After a subband has been partitioned into code blocks, each
of the code blocks is independently coded. The coding is per-
formed using the bit-plane coder described later in Section III-J.
For each code block, an embedded code is produced, comprised
of numerous coding passes. The output of the tier-1 encoding

8 Copyright c© 2002–2005 Michael D. Adams

tbx0 tby0(,)

tbx1 tby1(−1, −1)

B0 B2

B5B4B3

B1

B6 B7 B8

2
xcb’

2
xcb’

2
xcb’

2
ycb’

2
ycb’

2
ycb’

2
xcb’

2
ycb’

(m , n)

(0,0)
...

...

...

...

...

Fig. 8. Partitioning of a subband into code blocks.

process is, therefore, a collection of coding passes for the vari-
ous code blocks.

On the decoder side, the bit-plane coding passes for the var-
ious code blocks are input to the tier-1 decoder, these passes
are decoded, and the resulting data is assembled into subbands.
In this way, we obtain the reconstructed quantizer indices for
each subband. In the case of lossy coding, the reconstructed
quantizer indices may only be approximations to the quantizer
indices originally available at the encoder. This is attributable
to the fact that the code stream may only include a subset of
the coding passes generated by the tier-1 encoding process. In
the lossless case, the reconstructed quantizer indices must be
same as the original indices on the encoder side, since all cod-
ing passes must be included for lossless coding.

J. Bit-Plane Coding

The tier-1 coding process is essentially one of bit-plane cod-
ing. After all of the subbands have been partitioned into code
blocks, each of the resulting code blocks is independently coded
using a bit-plane coder. Although the bit-plane coding tech-
nique employed is similar to those used in the embedded ze-
rotree wavelet (EZW) [41] and set partitioning in hierarchical
trees (SPIHT) [42] codecs, there are two notable differences:
1) no interband dependencies are exploited, and 2) there are
three coding passes per bit plane instead of two. The first dif-
ference follows from the fact that each code block is completely
contained within a single subband, and code blocks are coded in-
dependently of one another. By not exploiting interband depen-
dencies, improved error resilience can be achieved. The second
difference is arguably less fundamental. Using three passes per
bit plane instead of two reduces the amount of data associated
with each coding pass, facilitating finer control over rate. Also,
using an additional pass per bit plane allows better prioritization
of important data, leading to improved coding efficiency.

As noted above, there are three coding passes per bit plane. In

order, these passes are as follows: 1) significance, 2) refinement,
and 3) cleanup. All three types of coding passes scan the sam-
ples of a code block in the same fixed order shown in Fig. 10.
The code block is partitioned into horizontal stripes, each hav-
ing a nominal height of four samples. If the code block height
is not a multiple of four, the height of the bottom stripe will
be less than this nominal value. As shown in the diagram, the
stripes are scanned from top to bottom. Within a stripe, columns
are scanned from left to right. Within a column, samples are
scanned from top to bottom.

The bit-plane encoding process generates a sequence of sym-
bols for each coding pass. Some or all of these symbols may be
entropy coded. For the purposes of entropy coding, a context-
based adaptive binary arithmetic coder is used—more specifi-
cally, the MQ coder from the JBIG2 standard [30]. For each
pass, all of the symbols are either arithmetically coded or raw
coded (i.e., the binary symbols are emitted as raw bits with sim-
ple bit stuffing). The arithmetic and raw coding processes both
ensure that certain bit patterns never occur in the output, allow-
ing such patterns to be used for error resilience purposes.

Cleanup passes always employ arithmetic coding. In the case
of the significance and refinement passes, two possibilities ex-
ist, depending on whether the so called arithmetic-coding bypass
mode (also known as lazy mode) is enabled. If lazy mode is en-
abled, only the significance and refinement passes for the four
most significant bit planes use arithmetic coding, while the re-
maining such passes are raw coded. Otherwise, all significance
and refinement passes are arithmetically coded. The lazy mode
allows the computational complexity of bit-plane coding to be
significantly reduced, by decreasing the number of symbols that
must be arithmetically coded. This comes, of course, at the cost
of reduced coding efficiency.

As indicated above, coding pass data can be encoded using
one of two schemes (i.e., arithmetic or raw coding). Consecu-
tive coding passes that employ the same encoding scheme con-
stitute what is known as a segment. All of the coding passes in a
segment can collectively form a single codeword or each coding
pass can form a separate codeword. Which of these is the case
is determined by the termination mode in effect. Two termina-
tion modes are supported: per-pass termination and per-segment
termination. In the first case, only the last coding pass of a seg-
ment is terminated. In the second case, all coding passes are
terminated. Terminating all coding passes facilitates improved
error resilience at the expense of decreased coding efficiency.

Since context-based arithmetic coding is employed, a means
for context selection is necessary. Generally speaking, context
selection is performed by examining state information for the
4-connected or 8-connected neighbors of a sample as shown in
Fig. 9.

In our explanation of the coding passes that follows, we focus
on the encoder side as this facilitates easier understanding. The
decoder algorithms follow directly from those employed on the
encoder side.

J.1 Significance Pass

The first coding pass for each bit plane is the significance
pass. This pass is used to convey significance and (as neces-
sary) sign information for samples that have not yet been found

Copyright c© 2002–2005 Michael D. Adams 9

h0

v0

h1

v1

x

(a)

h0

v0d0

h1

d3

d1

d2 v1

x

(b)

Fig. 9. Templates for context selection. The (a) 4-connected and (b) 8-
connected neighbors.

to be significant and are predicted to become significant during
the processing of the current bit plane. The samples in the code
block are scanned in the order shown previously in Fig. 10. If
a sample has not yet been found to be significant, and is pre-
dicted to become significant, the significance of the sample is
coded with a single binary symbol. If the sample also happens
to be significant, its sign is coded using a single binary sym-
bol. In pseudocode form, the significance pass is described by
Algorithm 1.

Algorithm 1 Significance pass algorithm.
1: for each sample in code block do
2: if sample previously insignificant and predicted to become significant dur-

ing current bit plane then
3: code significance of sample /* 1 binary symbol */
4: if sample significant then
5: code sign of sample /* 1 binary symbol */
6: endif
7: endif
8: endfor

If the most significant bit plane is being processed, all samples
are predicted to remain insignificant. Otherwise, a sample is
predicted to become significant if any 8-connected neighbor has
already been found to be significant. As a consequence of this
prediction policy, the significance and refinement passes for the
most significant bit plane are always empty and not explicitly
coded.

The symbols generated during the significance pass may or
may not be arithmetically coded. If arithmetic coding is em-
ployed, the binary symbol conveying significance information
is coded using one of nine contexts. The particular context used
is selected based on the significance of the sample’s 8-connected
neighbors and the orientation of the subband with which the
sample is associated (e.g., LL, LH, HL, HH). In the case that
arithmetic coding is used, the sign of a sample is coded as the
difference between the actual and predicted sign. Otherwise, the
sign is coded directly. Sign prediction is performed using the
significance and sign information for 4-connected neighbors.

J.2 Refinement Pass

The second coding pass for each bit plane is the refinement
pass. This pass signals subsequent bits after the most significant
bit for each sample. The samples of the code block are scanned
using the order shown earlier in Fig. 10. If a sample was found
to be significant in a previous bit plane, the next most significant
bit of that sample is conveyed using a single binary symbol. This
process is described in pseudocode form by Algorithm 2.

Like the significance pass, the symbols of the refinement pass
may or may not be arithmetically coded. If arithmetic coding is

Algorithm 2 Refinement pass algorithm.
1: for each sample in code block do
2: if sample found significant in previous bit plane then
3: code next most significant bit in sample /* 1 binary symbol */
4: endif
5: endfor

...

...

...

Fig. 10. Sample scan order within a code block.

employed, each refinement symbol is coded using one of three
contexts. The particular context employed is selected based on
if the second MSB position is being refined and the significance
of 8-connected neighbors.

J.3 Cleanup Pass

The third (and final) coding pass for each bit plane is the
cleanup pass. This pass is used to convey significance and (as
necessary) sign information for those samples that have not yet
been found to be significant and are predicted to remain insignif-
icant during the processing of the current bit plane.

Conceptually, the cleanup pass is not much different from the
significance pass. The key difference is that the cleanup pass
conveys information about samples that are predicted to remain
insignificant, rather than those that are predicted to become sig-
nificant. Algorithmically, however, there is one important differ-
ence between the cleanup and significance passes. In the case of
the cleanup pass, samples are sometimes processed in groups,
rather than individually as with the significance pass.

Recall the scan pattern for samples in a code block, shown
earlier in Fig. 10. A code block is partitioned into stripes with
a nominal height of four samples. Then, stripes are scanned
from top to bottom, and the columns within a stripe are scanned
from left to right. For convenience, we will refer to each column
within a stripe as a vertical scan. That is, each vertical arrow in
the diagram corresponds to a so called vertical scan. As will
soon become evident, the cleanup pass is best explained as op-
erating on vertical scans (and not simply individual samples).

The cleanup pass simply processes each of the vertical scans
in order, with each vertical scan being processed as follows. If
the vertical scan contains four samples (i.e., is a full scan), sig-
nificance information is needed for all of these samples, and
all of the samples are predicted to remain insignificant, a spe-
cial mode, called aggregation mode, is entered. In this mode,
the number of leading insignificant samples in the vertical scan
is coded. Then, the samples whose significance information is
conveyed by aggregation are skipped, and processing continues
with the remaining samples of the vertical scan exactly as is
done in the significance pass. In pseudocode form, this process
is described by Algorithm 3.

10 Copyright c© 2002–2005 Michael D. Adams

Algorithm 3 Cleanup pass algorithm.
1: for each vertical scan in code block do
2: if four samples in vertical scan and all previously insignificant and unvisited

and none have significant 8-connected neighbor then
3: code number of leading insignificant samples via aggregation
4: skip over any samples indicated as insignificant by aggregation
5: endif
6: while more samples to process in vertical scan do
7: if sample previously insignificant and unvisited then
8: code significance of sample if not already implied by run /* 1 binary symbol

*/
9: if sample significant then
10: code sign of sample /* 1 binary symbol */
11: endif
12: endif
13: endwhile
14: endfor

When aggregation mode is entered, the four samples of the
vertical scan are examined. If all four samples are insignificant,
an all-insignificant aggregation symbol is coded, and processing
of the vertical scan is complete. Otherwise, a some-significant
aggregation symbol is coded, and two binary symbols are then
used to code the number of leading insignificant samples in the
vertical scan.

The symbols generated during the cleanup pass are always
arithmetically coded. In the aggregation mode, the aggregation
symbol is coded using a single context, and the two symbol run
length is coded using a single context with a fixed uniform prob-
ability distribution. When aggregation mode is not employed,
significance and sign coding function just as in the case of the
significance pass.

K. Tier-2 Coding

In the encoder, tier-1 encoding is followed by tier-2 encoding.
The input to the tier-2 encoding process is the set of bit-plane
coding passes generated during tier-1 encoding. In tier-2 en-
coding, the coding pass information is packaged into data units
called packets, in a process referred to as packetization. The
resulting packets are then output to the final code stream. The
packetization process imposes a particular organization on cod-
ing pass data in the output code stream. This organization facil-
itates many of the desired codec features including rate scalabil-
ity and progressive recovery by fidelity or resolution.

A packet is nothing more than a collection of coding pass
data. Each packet is comprised of two parts: a header and body.
The header indicates which coding passes are included in the
packet, while the body contains the actual coding pass data it-
self. In the code stream, the header and body may appear to-
gether or separately, depending on the coding options in effect.

Rate scalability is achieved through (quality) layers. The
coded data for each tile is organized into L layers, numbered
from 0 to L−1, where L≥ 1. Each coding pass is either assigned
to one of the L layers or discarded. The coding passes containing
the most important data are included in the lower layers, while
the coding passes associated with finer details are included in
higher layers. During decoding, the reconstructed image quality
improves incrementally with each successive layer processed. In
the case of lossy compression, some coding passes may be dis-
carded (i.e., not included in any layer) in which case rate control

must decide which passes to include in the final code stream. In
the lossless case, all coding passes must be included. If multi-
ple layers are employed (i.e., L > 1), rate control must decide in
which layer each coding pass is to be included. Since some cod-
ing passes may be discarded, tier-2 coding is the second primary
source of information loss in the coding path.

Recall, from Section III-I, that each coding pass is associated
with a particular component, resolution level, subband, and code
block. In tier-2 coding, one packet is generated for each com-
ponent, resolution level, layer, and precinct 4-tuple. A packet
need not contain any coding pass data at all. That is, a packet
can be empty. Empty packets are sometimes necessary since a
packet must be generated for every component-resolution-layer-
precinct combination even if the resulting packet conveys no
new information.

As mentioned briefly in Section III-G, a precinct is essen-
tially a grouping of code blocks within a subband. The precinct
partitioning for a particular subband is derived from a partition-
ing of its parent LL band (i.e., the LL band at the next higher
resolution level). Each resolution level has a nominal precinct
size. The nominal width and height of a precinct must be a
power of two, subject to certain constraints (e.g., the maximum
width and height are both 215). The LL band associated with
each resolution level is divided into precincts. This is accom-
plished by overlaying the LL band with a regular grid having
horizontal and vertical spacings of 2PPx and 2PPy, respectively,
as shown in Fig. 11, where the grid is aligned with the origin
of the LL band’s coordinate system. The precincts bordering
on the edge of the subband may have dimensions smaller than
the nominal size. Each of the resulting precinct regions is then
mapped into its child subbands (if any) at the next lower resolu-
tion level. This is accomplished by using the coordinate trans-
formation (u,v) = (dx/2e ,dy/2e) where (x,y) and (u,v) are the
coordinates of a point in the LL band and child subband, re-
spectively. Due to the manner in which the precinct partitioning
is performed, precinct boundaries always align with code block
boundaries. Some precincts may also be empty. Suppose the
nominal code block size is 2xcb’ ×2ycb’. This results nominally
in 2PPx’−xcb’ × 2PPy’−ycb’ groups of code blocks in a precinct,
where

PPx’ =

{

PPx for r = 0

PPx−1 for r > 0
(12)

PPy’ =

{

PPy for r = 0

PPy−1 for r > 0
(13)

and r is the resolution level.
Since coding pass data from different precincts are coded in

separate packets, using smaller precincts reduces the amount
of data contained in each packet. If less data is contained in
a packet, a bit error is likely to result in less information loss
(since, to some extent, bit errors in one packet do not affect the
decoding of other packets). Thus, using a smaller precinct size
leads to improved error resilience, while coding efficiency is de-
graded due to the increased overhead of having a larger number
of packets.

More than one ordering of packets in the code stream is
supported. Such orderings are called progressions. There

Copyright c© 2002–2005 Michael D. Adams 11

trx 0 try 0(,)

trx 1 try 1(−1, −1)

K0 K2

K5K4K3

K1

K6 K7 K8

2
PPx

2
PPx

2
PPx

2
PPy

2
PPy

2
PPy

2
PPx

2
PPy

(m , n)

(0,0)
...

...

...

...

...

Fig. 11. Partitioning of a resolution into precincts.

are five builtin progressions defined: 1) layer-resolution-
component-position ordering, 2) resolution-layer-component-
position ordering, 3) resolution-position-component-layer or-
dering, 4) position-component-resolution-layer ordering, and
5) component-position-resolution-layer ordering. The sort order
for the packets is given by the name of the ordering, where po-
sition refers to precinct number, and the sorting keys are listed
from most significant to least significant. For example, in the
case of the first ordering given above, packets are ordered first
by layer, second by resolution, third by component, and last
by precinct. This corresponds to a progressive recovery by fi-
delity scenario. The second ordering above is associated with
progressive recovery by resolution. The three remaining order-
ings are somewhat more esoteric. It is also possible to specify
additional user-defined progressions at the expense of increased
coding overhead.

In the simplest scenario, all of the packets from a particular
tile appear together in the code stream. Provisions exist, how-
ever, for interleaving packets from different tiles, allowing fur-
ther flexibility on the ordering of data. If, for example, progres-
sive recovery of a tiled image was desired, one would probably
include all of the packets associated with the first layer of the
various tiles, followed by those packets associated with the sec-
ond layer, and so on.

In the decoder, the tier-2 decoding process extracts the various
coding passes from the code stream (i.e., depacketization) and
associates each coding pass with its corresponding code block.
In the lossy case, not all of the coding passes are guaranteed to
be present since some may have been discarded by the encoder.
In the lossless case, all of the coding passes must be present in
the code stream.

In the sections that follow, we describe the packet coding pro-
cess in more detail. For ease of understanding, we choose to ex-
plain this process from the point of view of the encoder. The de-
coder algorithms, however, can be trivially deduced from those

...

Fig. 12. Code block scan order within a precinct.

of the encoder.

K.1 Packet Header Coding

The packet header corresponding to a particular component,
resolution level, layer, and precinct, is encoded as follows. First,
a single binary symbol is encoded to indicate if any coding pass
data is included in the packet (i.e., if the packet is non-empty).
If the packet is empty, no further processing is required and the
algorithm terminates. Otherwise, we proceed to examine each
subband in the resolution level in a fixed order. For each sub-
band, we visit the code blocks belonging to the precinct of inter-
est in raster scan order as shown in Fig. 12. To process a single
code block, we begin by determining if any new coding pass
data is to be included. If no coding pass data has yet been in-
cluded for this code block, the inclusion information is conveyed
via a quadtree-based coding procedure. Otherwise, a binary
symbol is emitted indicating the presence or absence of new
coding pass data for the code block. If no new coding passes are
included, we proceed to the processing of the next code block
in the precinct. Assuming that new coding pass data are to be
included, we continue with our processing of the current code
block. If this is the first time coding pass data have been in-
cluded for the code block, we encode the number of leading in-
significant bit planes for the code block using a quadtree-based
coding algorithm. Then, the number of new coding passes, and
the length of the data associated with these passes is encoded. A
bit stuffing algorithm is applied to all packet header data to en-
sure that certain bit patterns never occur in the output, allowing
such patterns to be used for error resilience purposes. The entire
packet header coding process is summarized by Algorithm 4.

Algorithm 4 Packet header coding algorithm.
1: if packet not empty then
2: code non-empty packet indicator /* 1 binary symbol */
3: for each subband in resolution level do
4: for each code block in subband precinct do
5: code inclusion information /* 1 binary symbol or tag tree */
6: if no new coding passes included then
7: skip to next code block
8: endif
9: if first inclusion of code block then
10: code number of leading insignificant bit planes /* tag tree */
11: endif
12: code number of new coding passes
13: code length increment indicator
14: code length of coding pass data
15: endfor
16: endfor
17: else
18: code empty packet indicator /* 1 binary symbol */
19: endif
20: pad to byte boundary

12 Copyright c© 2002–2005 Michael D. Adams

K.2 Packet Body Coding

The algorithm used to encode the packet body is relatively
simple. The code blocks are examined in the same order as in the
case of the packet header. If any new passes were specified in the
corresponding packet header, the data for these coding passes
are concatenated to the packet body. This process is summarized
by Algorithm 5.

Algorithm 5 Packet body coding algorithm.
1: for each subband in resolution level do
2: for each code block in subband precinct do
3: if (new coding passes included for code block) then
4: output coding pass data
5: endif
6: endfor
7: endfor

L. Rate Control

In the encoder, rate control can be achieved through two dis-
tinct mechanisms: 1) the choice of quantizer step sizes, and
2) the selection of the subset of coding passes to include in the
code stream. When the integer coding mode is used (i.e., when
only integer-to-integer transforms are employed) only the first
mechanism may be used, since the quantizer step sizes must be
fixed at one. When the real coding mode is used, then either or
both of these rate control mechanisms may be employed.

When the first mechanism is employed, quantizer step sizes
are adjusted in order to control rate. As the step sizes are in-
creased, the rate decreases, at the cost of greater distortion. Al-
though this rate control mechanism is conceptually simple, it
does have one potential drawback. Every time the quantizer
step sizes are changed, the quantizer indices change, and tier-
1 encoding must be performed again. Since tier-1 coding re-
quires a considerable amount of computation, this approach to
rate control may not be practical in computationally-constrained
encoders.

When the second mechanism is used, the encoder can elect
to discard coding passes in order to control the rate. The en-
coder knows the contribution that each coding pass makes to
rate, and can also calculate the distortion reduction associated
with each coding pass. Using this information, the encoder can
then include the coding passes in order of decreasing distortion
reduction per unit rate until the bit budget has been exhausted.
This approach is very flexible in that different distortion metrics
can be easily accommodated (e.g., mean squared error, visually
weighted mean squared error, etc.).

For a more detailed treatment of rate control, the reader is
referred to [7] and [23].

M. Region of Interest Coding

The codec allows different regions of an image to be coded
with differing fidelity. This feature is known as region-of-
interest (ROI) coding. In order to support ROI coding, a very
simple yet flexible technique is employed as described below.

When an image is synthesized from its transform coefficients,
each coefficient contributes only to a specific region in the re-
construction. Thus, one way to code a ROI with greater fidelity
than the rest of the image would be to identify the coefficients

contributing to the ROI, and then to encode some or all of these
coefficients with greater precision than the others. This is, in
fact, the basic premise behind the ROI coding technique em-
ployed in the JPEG-2000 codec.

When an image is to be coded with a ROI, some of the trans-
form coefficients are identified as being more important than the
others. The coefficients of greater importance are referred to as
ROI coefficients, while the remaining coefficients are known as
background coefficients. Noting that there is a one-to-one cor-
respondence between transform coefficients and quantizer in-
dices, we further define the quantizer indices for the ROI and
background coefficients as the ROI and background quantizer
indices, respectively. With this terminology introduced, we are
now in a position to describe how ROI coding fits into the rest
of the coding framework.

The ROI coding functionality affects the tier-1 coding pro-
cess. In the encoder, before the quantizer indices for the vari-
ous subbands are bit-plane coded, the ROI quantizer indices are
scaled upwards by a power of two (i.e., by a left bit shift). This
scaling is performed in such a way as to ensure that all bits of the
ROI quantizer indices lie in more significant bit planes than the
potentially nonzero bits of the background quantizer indices. As
a consequence, all information about ROI quantizer indices will
be signalled before information about background ROI indices.
In this way, the ROI can be reconstructed at a higher fidelity than
the background.

Before the quantizer indices are bit-plane coded, the encoder
examines the background quantizer indices for all of the sub-
bands looking for the index with the largest magnitude. Suppose
that this index has its most significant bit in bit position N − 1.
All of the ROI indices are then shifted N bits to the left, and
bit-plane coding proceeds as in the non-ROI case. The ROI shift
value N is included in the code stream.

During decoding, any quantizer index with nonzero bits lying
in bit plane N or above can be deduced to belong to the ROI set.
After the reconstructed quantizer indices are obtained from the
bit-plane decoding process, all indices in the ROI set are then
scaled down by a right shift of N bits. This undoes the effect of
the scaling on the encoder side.

The ROI set can be chosen to correspond to transform coeffi-
cients affecting a particular region in an image or subset of those
affecting the region. This ROI coding technique has a number of
desirable properties. First, the ROI can have any arbitrary shape
and can consist of multiple disjoint regions. Second, there is no
need to explicitly signal the ROI set, since it can be deduced by
the decoder from the ROI shift value and the magnitude of the
quantizer indices.

For more information on ROI coding, the reader is referred
to [43, 44].

N. Code Stream

In order to specify the coded representation of an image, two
different levels of syntax are employed by the codec. The lowest
level syntax is associated with what is referred to as the code
stream. The code stream is essentially a sequence of tagged
records and their accompanying data.

The basic building block of the code stream is the marker seg-
ment. As shown in Fig. 13, a marker segment is comprised of

Copyright c© 2002–2005 Michael D. Adams 13

Type Length
(if required)

Parameters
(if required)

16 bits 16 bits variable length

Fig. 13. Marker segment structure.

Main Header

Other Marker Segments

Other Marker Segments
(e.g., COD, COC, QCD, QCC, RGN, etc.)

Tile−Part Header

(e.g., COD, COC, QCD, QCC, RGN, etc.)

SOC Marker Segment

SIZ Marker Segment

SOT Marker Segment

SOD Marker Segment

Tile−Part Body

Packet Data

...

Main Trailer

EOC Marker Segment

Fig. 14. Code stream structure.

three fields: the type, length, and parameters fields. The type (or
marker) field identifies the particular kind of marker segment.
The length field specifies the number of bytes in the marker seg-
ment. The parameters field provides additional information spe-
cific to the marker type. Not all types of marker segments have
length and parameters fields. The presence (or absence) of these
fields is determined by the marker segment type. Each type of
marker segment signals its own particular class of information.

A code stream is simply a sequence of marker segments and
auxiliary data (i.e., packet data) organized as shown in Fig. 14.
The code stream consists of a main header, followed by tile-part
header and body pairs, followed by a main trailer. A list of some
of the more important marker segments is given in Table II. Pa-
rameters specified in marker segments in the main header serve
as defaults for the entire code stream. These default settings,
however, may be overridden for a particular tile by specifying
new values in a marker segment in the tile’s header.

All marker segments, packet headers, and packet bodies are
a multiple of 8 bits in length. As a consequence, all markers
are byte-aligned, and the code stream itself is always an integral
number of bytes.

O. File Format

A code stream provides only the most basic information re-
quired to decode an image (i.e., sufficient information to deduce
the sample values of the decoded image). While in some simple
applications this information is sufficient, in other applications

LBox TBox XLBox
(if required)

DBox

32 bits 32 bits 64 bits variable

Fig. 15. Box structure.

additional data is required. To display a decoded image, for ex-
ample, it is often necessary to know additional characteristics of
an image, such as the color space of the image data and opacity
attributes. Also, in some situations, it is beneficial to know other
information about an image (e.g., ownership, origin, etc.) In or-
der to allow the above types of data to be specified, an additional
level of syntax is employed by the codec. This level of syntax is
referred to as the file format. The file format is used to convey
both coded image data and auxiliary information about the im-
age. Although this file format is optional, it undoubtedly will be
used extensively by many applications, particularly computer-
based software applications.

The basic building block of the file format is referred to as
a box. As shown in Fig. 15, a box is nominally comprised of
four fields: the LBox, TBox, XLBox, and DBox fields. The
LBox field specifies the length of the box in bytes. The TBox
field indicates the type of box (i.e., the nature of the information
contained in the box). The XLBox field is an extended length
indicator which provides a mechanism for specifying the length
of a box whose size is too large to be encoded in the length field
alone. If the LBox field is 1, then the XLBox field is present
and contains the true length of the box. Otherwise, the XLBox
field is not present. The DBox field contains data specific to
the particular box type. Some types of boxes may contain other
boxes as data. As a matter of terminology, a box that contains
other boxes in its DBox field is referred to as a superbox. Several
of the more important types of boxes are listed in Table III.

A file is a sequence of boxes. Since certain types of boxes are
defined to contain others, there is a natural hierarchical structure
to a file. The general structure of a file is shown in Fig. 16. The
JPEG-2000 signature box is always first, providing an indica-
tion that the byte stream is, in fact, correctly formatted. The
file type box is always second, indicating the version of the
file format to which the byte stream conforms. Although some
constraints exist on the ordering of the remaining boxes, some
flexibility is also permitted. The header box simply contains a
number of other boxes. The image header box specifies several
basic characteristics of the image (including image size, num-
ber of components, etc.). The bits per component box indicates
the precision and signedness of the component samples. The
color specification box identifies the color space of image data
(for display purposes) and indicates which components map to
which type of spectral information (i.e., the correspondence be-
tween components and color/opacity planes). Every file must
contain at least one contiguous code stream box. (Multiple con-
tiguous code stream boxes are permitted in order to facilitate the
specification of image sequences to support trivial animation ef-
fects.) Each contiguous code stream box contains a code stream
as data. In this way, coded image data is embedded into a file.
In addition to the types of boxes discussed so far, there are also
box types for specifying the capture and display resolution for
an image, palette information, intellectual property information,

14 Copyright c© 2002–2005 Michael D. Adams

TABLE II

TYPES OF MARKER SEGMENTS

Type Description
Start of codestream (SOC) Signals the start of a code stream. Always the first marker segment in the code stream (i.e., the first marker

segment in the main header).
End of codestream (EOC) Signals the end of the code stream. Always the last marker segment in the code stream.
Start of tile-part (SOT) Indicates the start of a tile-part header. Always the first marker segment in a tile-part header.
Start of data (SOD) Signal the end of the tile-part header. Always the last marker segment in the tile-part header. The tile body

follows immediately after this marker segment.
Image and tile size (SIZ) Conveys basic image characteristics (e.g., image size, number of components, precision of sample values),

and tiling parameters. Always the second marker segment in the code stream.
Coding style default (COD) Specifies coding parameters (e.g., multicomponent transform, wavelet/subband transform, tier-1/tier-2

coding parameters, etc.).
Coding style component (COC) Specifies a subset of coding parameters for a single component.
Quantization default (QCD) Specifies quantization parameters (i.e., quantizer type, quantizer parameters).
Quantization component (QCC) Specifies quantization parameters for a single component.
Region of interest (RGN) Specifies region-of-interest coding parameters.

File Type Box

Image Header Box

Color Specification Box

JP2 Header Box

...

Contiguous Code Stream Box

JPEG−2000 Signature Box

...

Fig. 16. File format structure.

and vendor/application-specific data.
Although some of the information stored at the file format

level is redundant (i.e., it is also specified at the code stream
level), this redundancy allows trivial manipulation of files with-
out any knowledge of the code stream syntax. The file name
extension “jp2” is to be used to identify files containing data in
the JP2 file format. For more information on the file format, the
reader is referred to [45].

P. Extensions

Although the baseline codec is quite versatile, there may
be some applications that could benefit from additional fea-
tures not present in the baseline system. To this end, Part 2
of the standard [15] defines numerous extensions to the base-
line codec. Some of these extensions include the follow-
ing: 1) additional intercomponent transforms (e.g., multidimen-
sional wavelet/subband transforms); 2) additional intracompo-
nent transforms (e.g., subband transforms based on arbitrary
filters and decomposition trees, different filters in the horizon-
tal and vertical directions); 3) overlapped wavelet transforms;
4) additional quantization methods such as trellis coded quanti-
zation [46,47]; 5) enhanced ROI support (e.g., a mechanism for
explicitly signalling the shape of the ROI and an arbitrary shift
value); and 6) extensions to the file format including support for
additional color spaces and compound documents.

IV. CONCLUSIONS

In this paper, we commenced with a high-level introduction
to the JPEG-2000 standard, and proceeded to study the JPEG-
2000 codec in detail. With its excellent coding performance and
many attractive features, JPEG-2000 will no doubt become a
widely used standard in the years to come.

APPENDIX

I. JASPER

JasPer is a collection of software (i.e., a library and applica-
tion programs) for the coding and manipulation of images. This
software is written in the C programming language. Of particu-
lar interest here, the JasPer software provides an implementation
of the JPEG-2000 Part-1 codec. The JasPer software was devel-
oped with the objective of providing a free JPEG-2000 codec
implementation for anyone wishing to use the JPEG-2000 stan-
dard. This software has also been published in the JPEG-2000
Part-5 standard, as an official reference implementation of the
JPEG-2000 Part-1 codec.

The JasPer software is available for download from the
JasPer Project home page (i.e., http://www.ece.uvic.ca/
˜mdadams/jasper) and the JPEG web site (i.e., http://www.
jpeg.org/software). For more information about JasPer, the
reader is referred to [8–10].

ACKNOWLEDGMENT

The author would like to thank Image Power, Inc. for their
past support in the development of the JasPer software. Also, the
author would like to express his gratitude to Dr. Faouzi Kossen-
tini for past collaborations that led to the author’s involvement
with JPEG-2000 standardization activities (hence, making a pa-
per like this possible).

REFERENCES

[1] ISO/IEC 10918-1: Information technology—Digital compression and cod-
ing of continuous-tone still images: Requirements and guidelines, 1994.

[2] G. K. Wallace, “The JPEG still picture compression standard,” Communi-
cations of the ACM, vol. 34, no. 4, pp. 30–44, Apr. 1991.

[3] W. B. Pennebaker and J. L. Mitchell, JPEG: Still Image Data Compression
Standard, Kluwer Academic, New York, NY, USA, 1992.

[4] ISO/IEC 14495-1: Lossless and near-lossless compression of continuous-
tone still images—baseline, 2000.

Copyright c© 2002–2005 Michael D. Adams 15

TABLE III

BOX TYPES

Type Description
JPEG-2000 Signature Identifies the file as being in the JP2 format. Always the first box in a JP2 file.
File Type Specifies the version of the format to which the file conforms. Always the second box in a JP2 file.
JP2 Header Specifies information about the image aside from the coded image data itself. (A superbox.)
Image Header Specifies the size and other basic characteristics of the image.
Color Specification Specifies the colorspace to which the image sample data belongs.
Contiguous Code Stream Contains a code stream.

[5] M. J. Weinberger, G. Seroussi, and G. Sapiro, “The LOCO-I lossless im-
age compression algorithm: Principles and standarization into JPEG-LS,”
IEEE Trans. on Image Processing, vol. 9, no. 8, pp. 1309–1324, Aug.
2000.

[6] B. Carpentieri, M. J. Weinberger, and G. Seroussi, “Lossless compression
of continuous-tone images,” Proc. of IEEE, vol. 88, no. 11, pp. 1797–1809,
Nov. 2000.

[7] ISO/IEC 15444-1: Information technology—JPEG 2000 image coding
system—Part 1: Core coding system, 2000.

[8] M. D. Adams, “JasPer project home page,” http://www.ece.uvic.ca/
˜mdadams/jasper, 2002.

[9] M. D. Adams and F. Kossentini, “JasPer: A software-based JPEG-2000
codec implementation,” in Proc. of IEEE International Conference on
Image Processing, Vancouver, BC, Canada, Oct. 2000.

[10] M. D. Adams, “JasPer software reference manual,” ISO/IEC JTC 1/SC
29/WG 1 N 2415, Dec. 2002, Documentation distributed with the JasPer
software.

[11] D. S. Taubman and M. W. Marcellin, JPEG2000: Image Compression
Fundamentals, Standards and Practice, Kluwer Academic, Boston, MA,
USA, 2002.

[12] M. Rabbani and R. Joshi, “An overview of the JPEG2000 still image
compression standard,” Signal Processing: Image Communication, vol.
17, no. 1, pp. 3–48, Jan. 2002.

[13] C. Christopoulos, A. Skodras, and T. Ebrahimi, “The JPEG 2000 still im-
age coding system: An overview,” IEEE Trans. on Consumer Electronics,
vol. 46, no. 4, pp. 1103–1127, Nov. 2000.

[14] “ISO/IEC call for contributions, JPEG 2000,” ISO/IEC JTC 1/SC 29/WG
1 N505, Mar. 1997.

[15] ISO/IEC 15444-2: Information technology—JPEG 2000 image coding
system—Part 2: Extensions, 2002.

[16] ISO/IEC 15444-3: Information technology—JPEG 2000 image coding
system—Part 3: Motion JPEG 2000, 2002.

[17] ISO/IEC 15444-5: Information technology—JPEG 2000 image coding
system—Part 5: Reference software, 2002.

[18] ISO/IEC 15444-4: Information technology—JPEG 2000 image coding
system—Part 4: Compliance testing, 2002.

[19] ISO/IEC 15444-6: Information technology—JPEG 2000 image coding
system—Part 6: Compound image file format, 2003.

[20] ISO/IEC 15444-12: Information technology—JPEG 2000 image coding
system—Part 12: ISO base media file format, 2003.

[21] A. S. Lewis and G. Knowles, “Image compression using the 2-D wavelet
transform,” IEEE Trans. on Image Processing, vol. 1, no. 2, pp. 244–250,
Apr. 1992.

[22] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding
using wavelet transform,” IEEE Trans. on Image Processing, vol. 1, no. 2,
pp. 205–220, Apr. 1992.

[23] D. Taubman, “High performance scalable image compression with
EBCOT,” in Proc. of IEEE International Conference on Image Processing,
Kobe, Japan, 1999, vol. 3, pp. 344–348.

[24] D. Taubman, “High performance scalable image compression with
EBCOT,” IEEE Trans. on Image Processing, vol. 9, no. 7, pp. 1158–1170,
July 2000.

[25] D. Taubman, E. Ordentlich, M. Weinberger, and G. Seroussi, “Embedded
block coding in JPEG 2000,” Signal Processing: Image Communication,
vol. 17, no. 1, pp. 49–72, Jan. 2002.

[26] A. R. Calderbank, I. Daubechies, W. Sweldens, and B.-L. Yeo, “Wavelet
transforms that map integers to integers,” Applied and Computational Har-
monic Analysis, vol. 5, no. 3, pp. 332–369, July 1998.

[27] M. D. Adams, Reversible Integer-to-Integer Wavelet Transforms for Image
Coding, Ph.D. thesis, Department of Electrical and Computer Engineer-
ing, University of British Columbia, Vancouver, BC, Canada, Sept. 2002,
Available online from http://www.ece.uvic.ca/˜mdadams.

[28] M. J. Gormish, E. L. Schwartz, A. F. Keith, M. P. Boliek, and A. Zandi,

“Lossless and nearly lossless compression of high-quality images,” in
Proc. of SPIE, San Jose, CA, USA, Mar. 1997, vol. 3025, pp. 62–70.

[29] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data
compression,” Communications of the ACM, vol. 30, no. 6, pp. 520–540,
1987.

[30] ISO/IEC 14492-1: Lossy/lossless coding of bi-level images, 2000.
[31] H. Chao, P. Fisher, and Z. Hua, “An approach to integer wavelet transforms

for lossless for image compression,” in Proc. of International Symposium
on Computational Mathematics, Guangzhou, China, Aug. 1997, pp. 19–
38.

[32] M. D. Adams, “Reversible wavelet transforms and their application to
embedded image compression,” M.A.Sc. thesis, Department of Electrical
and Computer Engineering, University of Victoria, Victoria, BC, Canada,
Jan. 1998, Available from http://www.ece.uvic.ca/˜mdadams.

[33] M. D. Adams and F. Kossentini, “Reversible integer-to-integer wavelet
transforms for image compression: Performance evaluation and analysis,”
IEEE Trans. on Image Processing, vol. 9, no. 6, pp. 1010–1024, June 2000.

[34] W. Sweldens, “The lifting scheme: A custom-design construction of
biorthogonal wavelets,” Applied and Computational Harmonic Analysis,
vol. 3, no. 2, pp. 186–200, 1996.

[35] W. Sweldens, “The lifting scheme: A construction of second generation
wavelets,” SIAM Journal of Mathematical Analysis, vol. 29, no. 2, pp.
511–546, Mar. 1998.

[36] C. M. Brislawn, “Preservation of subband symmetry in multirate signal
coding,” IEEE Trans. on Signal Processing, vol. 43, no. 12, pp. 3046–
3050, Dec. 1995.

[37] C. M. Brislawn, “Classification of nonexpansive symmetric extension
transforms for multirate filter banks,” Applied and Computational Har-
monic Analysis, vol. 3, no. 4, pp. 337–357, Oct. 1996.

[38] M. D. Adams and R. K. Ward, “Symmetric-extension-compatible re-
versible integer-to-integer wavelet transforms,” IEEE Trans. on Signal
Processing, vol. 51, no. 10, pp. 2624–2636, Oct. 2003.

[39] D. Le Gall and A. Tabatabai, “Sub-band coding of digital images using
symmetric short kernel filters and arithmetic coding techniques,” in Proc.
of IEEE International Conference on Acoustics, Speech, and Signal Pro-
cessing, New York, NY, USA, Apr. 1988, vol. 2, pp. 761–764.

[40] C. M. Brislawn, J. N. Bradley, R. J. Onyshczak, and T. Hopper, “The FBI
compression standard for digitized fingerprint images,” Preprint, 1996.

[41] J. M. Shapiro, “Embedded image coding using zerotrees of wavelet coeffi-
cients,” IEEE Trans. on Signal Processing, vol. 41, no. 12, pp. 3445–3462,
Dec. 1993.

[42] A. Said and W. A. Pearlman, “A new fast and efficient image codec based
on set partitioning in hierarchical trees,” IEEE Trans. on Circuits and
Systems for Video Technology, vol. 6, no. 3, pp. 243–250, June 1996.

[43] C. Christopoulos, J. Askelof, and M. Larsson, “Efficient methods for en-
coding regions of interest in the upcoming JPEG 2000 still image coding
standard,” IEEE Signal Processing Letters, vol. 7, no. 9, pp. 247–249,
Sept. 2000.

[44] J. Askelof, M. Larsson Carlander, and C. Christopoulos, “Region of in-
terest coding in JPEG 2000,” Signal Processing: Image Communication,
vol. 17, no. 1, pp. 105–111, Jan. 2002.

[45] J. S. Houchin and D. W. Singer, “File format technology in JPEG 2000
enables flexible use of still and motion sequences,” Signal Processing:
Image Communication, vol. 17, no. 1, pp. 131–144, Jan. 2002.

[46] J. H. Kasner, M. W. Marcellin, and B. R. Hunt, “Universal trellis coded
quantization,” IEEE Trans. on Image Processing, vol. 8, no. 12, pp. 1677–
1687, Dec. 1999.

[47] M. W. Marcellin, M. A. Lepley, A. Bilgin, T. J. Flohr, T. T. Chinen, and
J. H. Kasner, “An overview of quanziation in JPEG 2000,” Signal Pro-
cessing: Image Communication, vol. 17, no. 1, pp. 73–84, Jan. 2002.

[48] D. Santa-Cruz, R. Grosbois, and T. Ebrahimi, “JPEG 2000 performance
evaluation and assessment,” Signal Processing: Image Communication,
vol. 17, no. 1, pp. 113–130, Jan. 2002.

[49] W. Zeng, S. Daly, and S. Lei, “An overview of the visual optimization

16 Copyright c© 2002–2005 Michael D. Adams

tools in JPEG 2000,” Signal Processing: Image Communication, vol. 17,
no. 1, pp. 85–104, Jan. 2002.

Michael D. Adams was born in Kitchener, ON,
Canada. He received the B.A.Sc. degree in computer
engineering from the University of Waterloo, Water-
loo, ON, Canada in 1993, and the M.A.Sc. degree in
electrical engineering from the University of Victoria,
Victoria, BC, Canada in 1998, and the Ph.D. degree in
electrical engineering from the University of British
Columbia, Vancouver, BC, Canada in 2002. Since
January 2003, he has been Assistant Professor in the
Department of Electrical and Computer Engineering
at the University of Victoria (Canada). From 1993 to

1995, Michael was a member of technical staff at Bell-Northern Research (now
Nortel Networks) in Ottawa, ON, Canada where he developed real-time software
for fiber-optic telecommunication systems.

Michael is the recipient of a Natural Sciences and Engineering Research
Council (of Canada) Postgraduate Scholarship. He is a voting member of the
Canadian Delegation to ISO/IEC JTC 1/SC 29, a member of ISO/IEC JTC 1/SC
29/WG 1 (i.e., the JPEG/JBIG working group), and has been an active partici-
pant in the JPEG-2000 standardization effort, serving as a co-editor of the JPEG-
2000 Part-5 standard and principal author of one of the first JPEG-2000 imple-
mentations (i.e., JasPer). His research interests include digital signal processing,
wavelets, multirate systems, image coding, and multimedia systems.

